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ABSTRACT
Recently, nonnegative matrix factorization (NMF) has been
widely adopted for community detection, because of its
better interpretability. However, the existing NMF-based
methods have the following three problems: 1) they di-
rectly transform the original network into community mem-
bership space, so it is difficult for them to capture the hi-
erarchical information; 2) they often only pay attention
to the topology of the network and ignore its node at-
tributes; 3) it is hard for them to learn the global structure
information necessary for community detection. There-
fore, we propose a new community detection algorithm,
named Contrastive Deep Nonnegative Matrix Factorization
(CDNMF). Firstly, we deepen NMF to strengthen its ca-
pacity for information extraction. Subsequently, inspired
by contrastive learning, our algorithm creatively constructs
network topology and node attributes as two contrasting
views. Furthermore, we utilize a debiased negative sam-
pling layer and learn node similarity at the community level,
thereby enhancing the suitability of our model for commu-
nity detection. We conduct experiments on three public real
graph datasets and the proposed model has achieved bet-
ter results than state-of-the-art methods. Code available at
https://github.com/6lyc/CDNMF.git.

Index Terms— Community Detection, Deep NMF, Con-
trastive Learning, Community-Level Structure.

1. INTRODUCTION

Community detection (CD) is a fundamental task in complex
network analysis. It involves partitioning a network into mul-
tiple substructures, each corresponding to a community. An
effective partition requires nodes within the same community
to be densely connected, while connections between nodes
in different communities are sparse [1]. Mining the commu-
nity structure is the key to revealing and understanding the
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organizational principles and operation of complex network
systems. For example, in social networks, platforms detect
different user communities to facilitate friend recommenda-
tion and advertisement placement [2]. In addition to applica-
tions in social networks, CD is also widely used in protein-
protein interaction (PPI) networks [3], citation networks [4],
and more. Moreover, CD plays a crucial role in speaker di-
arization [5, 6].

Over the past two decades, many classical algorithms
have been proposed for CD, such as modularity [7], con-
ductance [8], and permanence [9]. However, these methods
are only capable of assigning each node to one community,
thereby narrowing their scope of applicability [10]. In recent
years, certain neural network-based approaches have also
been developed, including GUCD [11] and VGAER [12].
Nevertheless, their training processes resemble black boxes,
leading to limited interpretability of the results. In addition,
researchers have proposed community detection algorithms
based on NMF [13], which have been widely used because
of their good mathematical interpretability and natural ap-
plicability to the detection of overlapping communities. The
NMF algorithm factorizes the adjacency matrix A ∈ Rn×n

+ of
a graph in the following form: A ≈ UV s.t. U ≥ 0, V ≥ 0.
Two nonnegative matrix factors U ∈ Rn×r

+ and V ∈ Rr×n
+

can be obtained. Pre-define the number of communities in
the graph is r, the factor matrix U can be regarded as a
mapping between the original network and the community
membership space, with each column ui(i = 1, 2, · · · , r)
of U representing the basis vector of this space. The factor
matrix V can be regarded as the node representation matrix
(community indication matrix), with its element vi,j quan-
tifying the tendency of the j-th node to belong to the i-th
community. Overall, the factorization process and results
of the NMF algorithm demonstrate strong interpretability.
Additionally, when performing overlapping CD, naturally,
we can also assign each node to several communities with
relatively high tendency based on the matrix V . There are
also some variants of NMF with better performance, such
as Orthogonal Nonnegative Matrix Factorization (ONMF)
[14], Bayesian Nonnegative Matrix Factorization (BNMF)
[15], Nonnegative Matrix Tri-factorization (NMTF) [16] and
MX-ONMTF [17] etc.
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Fig. 1: The general framework of our Contrastive Deep Nonnegative
Matrix Factorization (CDNMF).

However, these methods still suffer from some of the fol-
lowing three problems:

1. Such methods are shallow, often with only a single
or double-layer mapping between the original network
and the community membership space. Real-world net-
works have complex organizational principles, which
are difficult to extract by shallow NMF.

2. Such methods tend to focus only on the topology of
the network while ignoring the attributes of the nodes.
In social sciences, it has been shown that the node at-
tributes can reflect and influence the structure of their
communities [18].

3. Such methods could not capture the community-level
information in the network. NMF-based methods focus
on the similarity between neighboring nodes and hardly
extract global structural information necessary for CD.

This paper presents a new CD algorithm, called CDNMF,
to address the limitations of existing methods. Overall, our
main contributions are:

1. We propose to use Deep NMF (DNMF) as the back-
bone to enhance the representation learning capability
of our model.

2. We construct a contrastive learning framework to unify
the learning of graph topology and node attributes
based on DNMF. Moreover, with the debiased negative
sampling layer filtering out false negatives, our model
better learns community-level information.

3. We conduct extensive experiments to evaluate the su-
periority, effectiveness, and efficiency of our CDNMF.
The results show that our algorithm outperforms other
SOTA CD methods.

2. PROPOSED METHOD

In this section, we describe our CDNMF in three modules.
The general framework of the model is shown in Fig. 1.

2.1. DNMF Layer

In order to extract the hierarchical information from the orig-
inal network topology, we reconstruct the adjacency matrix A
as the deep form:

min
Ui,Vp

LD = ∥A− U1U2 . . . UpVp∥2F

s.t. Vp ≥ 0, Ui ≥ 0,∀i = 1, 2, . . . , p,
(1)

where Vp ∈ Rr×n
+ , Ui ∈ Rri−1×ri

+ (i = 1, 2, . . . , p) and n =
r0 ≥ r1 ≥ · · · ≥ rp−1 ≥ rp = r. r is the number of commu-
nities in the network. The ∥·∥F denotes the Frobenius norm of
the matrix. Each matrix Ui(i = 1, 2, . . . , p) can be interpreted
as the i-th feature matrix with different hierarchical informa-
tion. U1U2 . . . Un is the total mapping between the original
network and the community membership space. The matrix
Vp is the node representation matrix after deep transforma-
tion, and each column can be understood as the tendency of a
node to belong to different communities.

To transform the optimization problem with constraints in
Eq. (1) into an unconstrained problem, we design a penalty
term for each nonnegative matrix. At first, we define the func-
tion f : Ra×b → Ra×b for any matrix B ∈ Ra×b satisfying:

f(B) =

{
Bij , Bij < 0
0, Bij ≥ 0.

(2)

In brief, the function f serves to convert the positive elements
of the input matrix into 0 while leaving the negative elements
unchanged. Naturally, the penalty term for the matrix Ui(i =
1, 2, . . . , p) is defined as:

min
Ui

∥f (Ui)∥2F . (3)

Similarly, the penalty term for the matrix Vp is defined as:

min
Vp

∥f (Vp)∥2F . (4)

Combining Eq. (3) as well as (4), we transform the op-
timization problem Eq. (1) into the following unconstrained
objective function:

min
Ui,Vp

LA = ∥A− U1U2 . . . UpVp∥2F

+ α

(
p∑

i=1

∥f (Ui)∥2F + ∥f (Vp)∥2F

)
,

(5)

where α > 0 is the coefficient of the nonnegative penalty
term. Similarly, for the node feature matrix X of the network
we obtain the following objective function:

min
Wj ,Hm

LX = ∥X −W1W2 . . .WmHm∥2F

+ α

 m∑
j=1

∥f (Wj)∥2F + ∥f (Hm)∥2F

 .
(6)



Overall, we obtain the objective function for the DNMF
term:

min
Ui,Vp,Wj ,Hm

LDNMF = LA + LX . (7)

In addition, to preserve the intrinsic geometric structure of
node pairs in deep hierarchical mapping, we introduce graph
regularization as follows [16]:

1

2

∑
i

∑
j

A(i, j) ∥Vp(:, i)− Vp(:, j)∥22 = tr
(
VpLV

T
p

)
,

(8)
where L = D − A denotes the graph Laplacian matrix, D is
a diagonal matrix, and its diagonal elements are the row sums
of A. tr(·) denotes the trace of the matrix.

Then, we minimize the graph regularization for two views
and obtain the objective function for the graph regularization
term:

min
Vp,Hm

Lreg = LregA + LregX

= tr
(
VpLV

T
p

)
+ tr

(
HmLHT

m

)
.

(9)

2.2. Debiased Negative Sampling Layer

After the DNMF layer, we would obtain the pseudo commu-
nity labels from the node representation matrix, which could
reduce the false negative samples. Specifically, we first obtain
the pseudo labels of node vi by:

c∗i = argmax (Vp(:, i)) (10)

Next, we remove all nodes that have the same pseudo label
as vi to obtain the debiased negative sample set Ñi of node vi:

Ñi = {vm} (c∗m ̸= c∗i ) . (11)

In fact, the accuracy of pseudo community labels continues to
improve with training iterations.

2.3. Graph Contrastive Learning Layer

As shown in Fig. 1, we use the adjacency matrix A of the net-
work topology and the feature matrix X of the node attributes
as two views for contrastive learning. In particular, for each
node vi, we consider the representation vector Vp(:, i) gener-
ated on the topology view as the anchor point, the represen-
tation vector Hm(:, i) generated on the node attribute view as
the positive sample, and the representation vectors of nodes
in the set Ñi in Eq. (11) as the negative samples.

Then, for each positive sample pair (Vp(:, i), Hm(:, i)),
we define the contrastive loss as follows:

l (Vp(:, i), Hm(:, i))

= log
eθ(Vp(:,i),Hm(:,i))/τ

eθ(Vp(:,i),Hm(:,i))/τ +
∑n

k=1 1[k∈Ñi]e
θ(Vp(:,i),Vp(:,k))/τ

,

(12)

Algorithm 1 CDNMF
Input: a graph G = (A,X), the number of communities r;
Output: Cp;

1: Pre-training stage:
2: U1, V1 ← NMF(A, r1) ;
3: for i = 2 to p do
4: Ui, Vi ← NMF(Vi−1, ri) ; //rp = r
5: end for
6: The same pre-training process for X .
7: Fine-tuning stage:
8: Initialize each matrix factor with the pre-training values.
9: for i = 1 to epoch do

10: Generate the pseudo labels c∗i by Eq. (10).
11: Update the negative sample set Ñi by Eq. (11).
12: Update model parameters by minimizing Eq.(14)

through SGD.
13: end for
14: return Cp

where θ(v,h) = s(g(v), g(h)), s is the cosine similarity
function , and g is the MLP of two layers. 1[k∈Ñi] ∈ {0, 1} is

the indicator function that equals 1 if k ∈ Ñi and 0 otherwise.
τ is the temperature parameter.

The contrast of positive samples extracts consistency as
well as complementary information from each node topol-
ogy and attribute. The contrast of negative samples expands
the distance between different communities so that our model
learns the community-level similarity between nodes.

In the graph contrastive learning layer, we optimize the
contrastive loss of each node, and obtain the objective func-
tion for the contrastive learning term:

min
Vp,Hm

Lcl = −
1

n

n∑
i=1

l (Vp(:, i), Hm(:, i)) (13)

2.4. Training Process

We jointly optimize each layer, and define the total objective
function as follows:

min
Ui,Vp,Wj,,Hm

L = LDNMF + βLreg + γLcl, (14)

where β, γ > 0 are the scale factors. After the training pro-
cess in Algorithm 1, the predicted community labels for each
node vi are:

Cp = {c∗i }
n
i=1 = argmax (Vp) . (15)

3. EXPERIMENTS

In this section, we first introduce our experimental setup and
then compare our method with state-of-the-art methods in
community detection tasks.



Table 1: Community detection performance with ACC and NMI on
three datasets. The bold and underlined text indicate the optimal and
suboptimal results, respectively.

Method Cora Citeseer PubMed
ACC NMI ACC NMI ACC NMI

NMF 0.4103 0.2851 0.3074 0.1319 0.5133 0.1606
ONMF 0.3811 0.2416 0.3330 0.1423 0.5575 0.1582
BNMF 0.4191 0.2521 0.3324 0.0825 0.5110 0.0714
NSED 0.4234 0.2928 0.3448 0.1492 0.5201 0.1729
LINE 0.4044 0.2376 0.3019 0.0573 0.4990 0.1357
Node2Vec 0.3674 0.1978 0.2521 0.0486 0.4067 0.0635
MNMF 0.1647 0.0035 0.1890 0.0031 0.3397 0.0002
LP-FNMTF 0.2861 0.0261 0.2327 0.0143 0.5437 0.1532
K-means++ 0.3230 0.2210 0.4160 0.1910 0.4150 0.2300
VGAER 0.4530 0.2970 0.3020 0.2170 0.3010 0.2230
DNMF 0.4849 0.3572 0.3635 0.1582 0.5389 0.1709
DANMF 0.5499 0.3764 0.4242 0.1831 0.6393 0.2221
Ours 0.6081 0.4006 0.4756 0.2559 0.6653 0.2330

3.1. Experimental Setup

We perform experiments on three widely used graph datasets:
Cora [19], Citeseer [20], and PubMed [21]. Then, we com-
pare our method with four types of CD methods, including
four shallow NMF-based methods: NMF [22], ONMF [14],
BNMF [15], NSED [23], three network embedding methods:
LINE [24], Node2Vec [25], MNMF [26], three methods that
consider node attributes: LP-FNMTF [27], K-means++ [28],
VGAER [12] and two methods based on Deep NMF: DNMF
[10], DANMF [10].

In particular, we fixed the number of hidden layers in the
model to 3. The parameters used for the Cora are: α =
400, β = 3.0, γ = 5.0, τ = 1.3; the parameters used for the
Citeseer are: α = 3000, β = 1.0, γ = 5.0, τ = 1.5; and the
parameters used for the PubMed are: α = 100, β = 1.0, γ =
1.0, τ = 0.5. Moreover, ACC and NMI will be used for eval-
uating each CD method. We run each algorithm 20 times and
report the average results.

3.2. Community Detection

It is worth noting that DNMF steadily obtains better perfor-
mance than shallow NMF-based methods since it can learn
hierarchical information. Our CDNMF obtains better per-
formance than DNMF because it learns consistent semantic
information from both network topology and node features.
Moreover, our model expands the distance between different
communities to fully learn the community-level similarity
between nodes. Although all three embedding-based ap-
proaches attempt to maintain higher-order similarity between
nodes, they do not exhibit competitive performance. For
LINE and Node2Vec, they do not expressly model to pre-
serve community-level similarity between nodes. In contrast,
MNMF applies modularity to reveal the community structure
of the network. However, the modularity approach may suf-
fer from the Resolution Limit Problem [29]. The results are
shown in Table 1.

Table 2: Results of ablation experiments based on Cora and Citeseer.

Methods Cora Citeseer
ACC ∆ NMI ∆ ACC ∆ NMI ∆

Ours [L(A)] 0.5835 2.46% 0.3781 2.25% 0.4598 1.58% 0.1672 8.87%
Ours [L(X)] 0.5162 9.19% 0.3501 5.05% 0.3499 12.6% 0.1749 8.10%
Ours 0.6081 0.4006 0.4756 0.2559

Fig. 2: The analysis of the convergence rate of our algorithm.

3.3. Ablation Experiments

We consider removing our model’s graph contrastive learning
layer, i.e., let γ = 0 in the total objective function. Then we
perform community detection experiments based on the adja-
cency matrix A and the node feature matrix X , respectively,
denoted as ”Ours [L(A)]” and ”Ours [L(X)]”.

In both datasets, ”Ours [L(A)]” basically outperforms
”Ours [L(X)]”, which indicates that the topology of the net-
work has more influence on community detection to some
extent. However, both of them are less effective than ”Ours”.
This indicates that the information from a single view, either
the topology of the network or the attributes of the nodes,
cannot accurately model the community-level relationships
between nodes. The results are shown in Table 2.

3.4. Convergence Analysis

Our optimization process is divided into two stages. In the
pre-training stage, we perform NMF for each layer of the two
input matrices, and its convergence has been analyzed in [23].
Next, we visualize the convergence of the fine-tuning stage in
Fig. 2. We observe that our model can achieve convergence
within about 20 epochs with a fast convergence rate. Similar
results also can be observed on PubMed.

4. CONCLUSION

In this paper, we propose a novel community detection
method called CDNMF, which innovatively combines the
idea of graph contrastive learning into NMF. Our CDNMF
extracts the consistency information in network topology and
node features through positive sample pairs and expands the
distance of different communities in the representation space
through negative sample pairs. We conduct various experi-
ments to verify the superiority, effectiveness, and efficiency of
our model. Moreover, there is potential to integrate additional
matrix factorization and contrastive learning algorithms.
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